Preparation of Liquid Crystal Networks for Macroscopic Oscillatory Motion Induced by Light
نویسندگان
چکیده
A strategy based on doped liquid crystalline networks is described to create mechanical self-sustained oscillations of plastic films under continuous light irradiation. The photo-excitation of dopants that can quickly dissipate light into heat, coupled with anisotropic thermal expansion and self-shadowing of the film, gives rise to the self-sustained deformation. The oscillations observed are influenced by the dimensions and the modulus of the film, and by the directionality and intensity of the light. The system developed offers applications in energy conversion and harvesting for soft-robotics and automated systems. The general method described here consists of creating free-standing liquid crystalline films and characterizing the mechanical and thermal effects observed. The molecular alignment is achieved using alignment layers (rubbed polyimide), commonly used in the display manufacturing industry. To obtain actuators with large deformation, the mesogens are aligned and polymerized in a splay/bend configuration, i.e., with the director of the liquid crystals (LCs) going gradually from planar to homeotropic through the film thickness. Upon irradiation, the mechanical and thermal oscillations obtained are monitored with a high-speed camera. The results are further quantified by image analysis using an image processing program.
منابع مشابه
Preparation and evaluation of some newly liquid crystal as antioxidant for base stocks
Four liquid crystal compounds of the form, 2-Sec-butyl-4-[(4-x-phenyl) diazenyl) phenyl-4-(octadecyloxy] benzoate symbolized as I18a, I18b, I18c and I18d were prepared in which the substituent (X) was taken CH3O-, CH3-, Br- and -NO2 respectively. Characterization of prepared compounds is done using FT-IR, 1H-NMR, Mass Spectroscopy and Elemental Analysis.. Their mesophase behavior was investigat...
متن کاملUnidirectional rotary motion in a liquid crystalline environment: color tuning by a molecular motor.
Life could not exist without motion induced by a variety of molecular motors. The construction of artificial motors by chemical synthesis, which can power motions that lead to macroscopic detectable effects in a system, is a major endeavor in contemporary science. To move toward this goal, a host-guest system, composed of a nematic liquid crystal film doped with a chiral light-driven molecular ...
متن کاملLight-induced crawling of crystals on a glass surface
Motion is an essential process for many living organisms and for artificial robots and machines. To date, creating self-propelled motion in nano-to-macroscopic-sized objects has been a challenging issue for scientists. Herein, we report the directional and continuous motion of crystals on a glass surface when irradiated simultaneously with two different wavelengths, using simple azobenzenes as ...
متن کاملNonlinear photomechanics of nematic networks: upscaling microscopic behaviour to macroscopic deformation
A liquid crystal network whose chromophores are functionalized by photochromic dye exhibits light-induced mechanical behaviour. As a result, the micro-scaled thermotropic traits of the network and the macroscopic phase behaviour are both influenced as light alternates the shape of the dyes. In this paper, we present an analysis of this photomechanical behaviour based on the proposed multiscale ...
متن کاملRegulating the modulus of a chiral liquid crystal polymer network by light
We report a novel way to modulate the elastic modulus of azobenzene containing liquid crystal networks (LCNs) by exposure to light. The elastic modulus can cycle between different levels by controlling the illumination conditions. Exposing the polymer network to UV light near the trans absorption band of azobenzene gives a small reduction of the glass transition temperature thereby lowering the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 31 شماره
صفحات -
تاریخ انتشار 2017